Bibliography
-
[1]
M. Anitescu and F. A. Potra (2002)
A time-stepping method for stiff multibody dynamics with contact and friction.
International Journal for Numerical Methods in Engineering 55 (7), pp. 753–784.
Cited by: §8.9.4.
-
[2]
E. M. Arruda and M. C. Boyce (1993)
A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials.
Journal of the Mechanics and Physics of Solids 41 (2), pp. 389–412.
Cited by: §6.10.2.8.
-
[3]
Y. Bei and B. J. Fregly (2004)
Multibody dynamic simulation of knee contact mechanics.
Medical engineering & physics 26 (9), pp. 777–789.
Cited by: §8.7.3.
-
[4]
L. Blankevoort and R. Huiskes (1991)
Ligament-bone interaction in a three-dimensional model of the knee.
J. Biomech. Eng. 113 (3), pp. 263–269.
Cited by: §4.5.5.3.
-
[5]
S. S. Blemker and S. L. Delp (2005)
Three-dimensional representation of complex muscle architectures and geometries.
Annals of biomedical engineering 33 (5), pp. 661–673.
Cited by: §4.5.1.5,
§6.10.3.2,
§6.10.3.3,
§6.9.3.
-
[6]
J. Bonet and R. D. Wood (2000)
Nonlinear continuum mechanics for finite element analysis.
Cambridge University Press.
Cited by: §6.1.
-
[7]
S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman and D. G. Thelen (2007)
OpenSim: open-source software to create and analyze dynamic simulations of movement.
IEEE T Bio-Med Eng 54 (11), pp. 1940–1950.
Cited by: §1.2,
§10.1,
§10.2.9,
§4.5.4.1,
§4.5.4.2,
§4.5.5.3.
-
[8]
L. Kavan, S. Collins, J. Žára and C. O’Sullivan (2008)
Geometric skinning with approximate dual quaternion blending.
ACM Transactions on Graphics (TOG) 27 (4), pp. 1–23.
Cited by: item DUAL_QUATERNION_LINEAR,
item DUAL_QUATERNION_ITERATIVE.
-
[9]
C. Lacoursière (2007)
Ghosts and machines: regularized variational methods for interactive simulations of multibodies with dry frictional contacts.
Ph.D. Thesis, Umeå University, Department of Computing Science.
Cited by: §3.3.8.
-
[10]
C. Lacoursière (2007)
Ghosts and machines: regularized variational methods for interactive simulations of multibodies with dry frictional contacts.
Ph.D. Thesis, Datavetenskap, UmeÂ, Computer Science Dept., Umea University, Sweden.
Cited by: §8.9.4.
-
[11]
J. E. Lloyd, I. Stavness and S. Fels (2012)
ArtiSynth: a fast interactive biomechanical modeling toolkit combining multibody and finite element simulation.
In Soft tissue biomechanical modeling for computer assisted surgery,
pp. 355–394.
Cited by: §1.2,
§10.1.3,
§10.1.3,
§3.3.2.
-
[12]
S. Maas, B. J Ellis, G. A Ateshian and J. Weiss (2012-01)
FEBio: finite elements for biomechanics.
Journal of biomechanical engineering 134, pp. 011005.
External Links: Document
Cited by: §6.1.2.3.
-
[13]
S. Maas, D. Rawlins, J. Weiss and G. Ateshian
FEBio theory manual.
Note: https://help.febio.org/FEBio/FEBio_tm_2_7
Cited by: §6.1.2.3,
§6.10.1.
-
[14]
M. Millard and S. Delp (2012)
A computationally efficient muscle model.
In Summer Bioengineering Conference,
pp. 1055–1056.
Cited by: §4.5.6.
-
[15]
M. Millard, T. Uchida, A. Seth and S. L. Delp (2013)
Flexing computational muscle: modeling and simulation of musculotendon dynamics.
Journal of biomechanical engineering 135 (2).
Cited by: §4.5.4.1.
-
[16]
M. Müller and M. H. Gross (2004)
Interactive virtual materials..
In Graphics interface,
Vol. 2004, pp. 239–246.
Cited by: §6.1.3,
§6.10.1,
§6.10.1.
-
[17]
M. Nesme, P. G. Kry, L. Jeřábková and F. Faure (2009)
Preserving topology and elasticity for embedded deformable models.
In ACM Transactions on Graphics (TOG),
Vol. 28, pp. 52.
Cited by: Chapter 11.
-
[18]
W. Ngan and J. Lloyd (2008-02)
Efficient deformable body simulation using stiffness-warped nonlinear finite elements.
In Symposium on Interactive 3D Graphics and Games (i3D),
pp. .
Note: poster
Cited by: §6.1.3,
§6.10.1,
§6.10.1.
-
[19]
C. Peck, G. Langenbach and A. Hannam (2000)
Dynamic simulation of muscle and articular properties during human wide jaw opening.
Archives of Oral Biology 45 (11), pp. 963–982.
Cited by: §4.5.1.4.
-
[20]
F. A. Potra, M. Anitescu, B. Gavrea and J. Trinkle (2006)
A linearly implicit trapezoidal method for integrating stiff multibody dynamics with contact, joints, and friction.
International Journal for Numerical Methods in Engineering 66 (7), pp. 1079–1124.
Cited by: §8.9.4.
-
[21]
M. Servin, C. Lacoursiere and N. Melin (2006)
Interactive simulation of elastic deformable materials.
In Proceedings of SIGRAD Conference 2006 in Skövde, Sweden,
pp. 22–32.
Cited by: §3.3.8.
-
[22]
M. A. Sherman, A. Seth and S. L. Delp (2011)
Simbody: multibody dynamics for biomedical research.
Procedia Iutam 2, pp. 241–261.
Cited by: §8.7.3.
-
[23]
C. R. Smith, R. L. Lenhart, J. Kaiser, M. F. Vignos and D. G. Thelen (2016)
Influence of ligament properties on tibiofemoral mechanics in walking.
The journal of knee surgery, pp. 099–106.
Cited by: §4.5.5.3.
-
[24]
I. Stavness, C. A. Sánchez, J. Lloyd, A. w. Ho, J. Wang, S. Fels and D. Huang (2014)
Unified skinning of rigid and deformable models for anatomical simulati on s.
In SIGGRAPH Asia 2014 Technical Briefs,
pp. 9.
Cited by: Figure 11.1,
Chapter 11.
-
[25]
G. Taubin (1995)
Curve and surface smoothing without shrinkage.
In Computer Vision, 1995. Proceedings., Fifth International Conference on,
pp. 852–857.
Cited by: §9.3.
-
[26]
D. G. Thelen (2003)
Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults.
J. Biomech. Eng. 125 (1), pp. 70–77.
Cited by: §4.5.4.2,
§4.5.4.2,
§4.5.4.2,
§4.5.4.2.
-
[27]
D. Veronda and R. Westmann (1970)
Mechanical characterization of skin-finite deformations.
Journal of biomechanics 3 (1), pp. 111–124.
Cited by: §6.10.2.9.